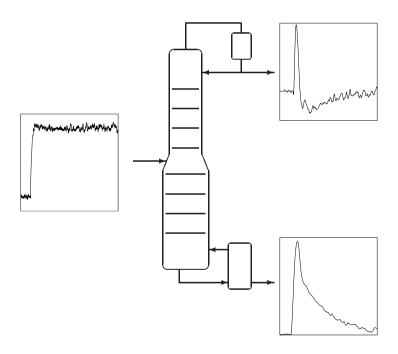

Commande des procédés

Jean-Pierre CORRIOU



Commande des procédés

3^e édition

Jean-Pierre Corriou

Professeur à l'École Nationale Supérieure des Industries Chimiques de Nancy

www.editions.lavoisier.fr

Dans la même collection:

Cinétique et catalyse, 2^e Éd.

G. Scacchi, M. Bouchy, J.-F. Foucaut, O. Zahraa, R. Fournet, 2011

Sécurité des procédés chimiques: connaissances de base et méthodes d'analyse de risques, 2^e Éd.

A. Laurent, 2003

Génie de la réaction chimique, 2^e Éd.

J. Villermaux, 1993

Chez le même éditeur :

Méthodes numériques et optimisation. Théorie et pratique pour l'ingénieur J.-P. Corriou, 2010

Principes fondamentaux du génie des procédés et de la technologie chimique : aspects théoriques et pratiques, 2e Éd.

H. Fauduet, 2012

Mécanique des fluides et des solides appliquée à la chimie

H. Fauduet, 2011

Introduction au génie des procédés

D. Ronze, 2008

Phénomènes de transfert en génie des procédés

J.-P. Couderc, Ch. Gourdon, A. Liné, 2008

Dictionnaire de la chimie et de ses applications, 4° Éd.

C. Duval, R. Duval, J.-C. Richer, 2010

Direction éditoriale : Emmanuel Leclerc Edition : Brigitte Peyrot Fabrication : Estelle Perez-Le Du

Impression et brochage: EMD, Lassay-les-Châteaux

© 2012, Lavoisier, Paris

ISBN: 978-2-7430-1471-1 ISSN: 1251-5159

Préface

Organisation de l'ouvrage

L'ouvrage a été conçu afin d'introduire progressivement des concepts de difficulté croissante et de permettre un apprentissage des théories et des méthodes de commande qui ne soit pas trop brutal. Il comporte différents niveaux de lecture (Figure 1). En particulier, la première partie peut être abordée en majorité par des étudiants débutant en automatique ou par des techniciens et ingénieurs issus du monde industriel, n'ayant eu jusque-là qu'un contact de terrain avec l'automatique et désirant améliorer leurs connaissances. Les parties suivantes nécessitent une connaissance préalable minimale en automatique. Elles permettent également de mettre en oeuvre des techniques souvent plus performantes. Sans prétendre à l'exhaustivité, ce livre propose un large éventail de méthodes d'identification et de commande applicables sur les procédés et accompagnées d'exemples suivis fournissant ainsi des éléments de comparaison.

Ce livre ne prétend pas rivaliser avec des livres théoriques d'automatique spécialisés sur tel ou tel point, par exemple l'identification, le traitement du signal, la commande multivariable, la commande robuste, ou la commande non linéaire. Par contre, le lecteur trouvera de nombreuses références et des exposés permettant de comprendre un grand nombre de ces concepts et de les appliquer dans son domaine, en s'inspirant des cas traités dans le présent ouvrage.

Plusieurs commandes sont examinées sous des angles différents:

- la commande par modèle interne mono-entrée mono-sortie en continu et en discret, multivariable en discret,
- la commande par placement de pôles en continu et en discret,
- la commande linéaire quadratique mono-entrée mono-sortie par fonction de transfert continue et multivariable dans l'espace d'état en continu et en discret.
- la commande prédictive généralisée, la commande prédictive basée sur le modèle, éventuellement avec observateur, linéaire ou non linéaire.

La considération d'un même problème par des approches différentes entraîne ainsi une réflexion approfondie.

Les exemples souvent pris dans le domaine du génie des procédés concernent en particulier des réacteurs chimiques, biologiques, de polymérisation, un réacteur de cracking catalytique (FCC), ou des colonnes de distillation. Ces exemples sont détaillés, y compris numériquement, afin que les raisonnements utilisés puissent être vérifiés et repris par le lecteur. Les simulations ont été réalisées à l'aide des logiciels $Matlab^{\textcircled{R}}$, $Maple^{\textcircled{R}}$ et en Fortran.

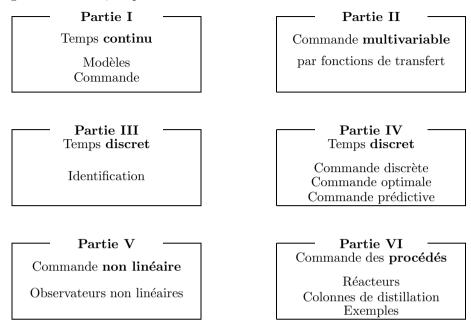


Figure 1: Organisation générale du livre.

La partie I concerne la commande monovariable en temps continu. La présentation faite de la commande linéaire des procédés mono-entrée mono-sortie à contre réaction est classique, volontairement simple dans l'ensemble. Elle présente l'avantage pédagogique de bien décomposer l'approche d'un problème de commande, d'introduire un certain nombre de notions importantes, et facilite à notre avis la compréhension de la commande réalisée en temps discret, appelée commande numérique, et de la commande non linéaire. Egalement, elle est proche, par sa conception, d'une grande partie de la pratique industrielle, tout au moins dans le domaine du génie chimique. Le régulateur PID continu y est traité de manière abondante, mais sans exclusivité. Les principaux types de modèles dynamiques rencontrés en génie des procédés sont commentés et les modèles de systèmes sont présentés aussi bien dans l'espace d'état que comme des fonctions de transfert (chapitre 1). La commande est abordée simplement par le régulateur PID (chapitre 2). La stabilité est présentée à la fois pour les systèmes linéaires et non linéaires. Ainsi, la stabilité d'un réacteur de polymérisation est détaillée en mettant en évidence la présence d'états stationnaires multiples en relation avec le comportement physique du réacteur (chapitre 3). La synthèse des régulateurs est abordée avec le PID, mais est ensuite élargie à la commande par modèle interne, très importante industriellement, la commande par placement de pôles ou la commande linéaire quadratique (chapitre 4). L'analyse fréquentielle débute de manière classique par l'analyse dans les représentations de Bode et de Nyquist, mais est ensuite étendue à travers la robustesse et les fonctions de sensibilité (chapitre 5). Les améliorations des régulateurs comme la compensation de retard pur, la commande en cascade, la commande par anticipation sont passées en revue avec des exemples d'application sur des procédés industriels (chapitre 6). La première partie

Partie I

Modélisation dynamique, Dynamique en boucle ouverte	Chapitre 1
Commande linéaire PID par rétroaction	Chapitre 2
Analyse de stabilité linéaire et non linéaire	Chapitre 3
Conception des régulateurs PID, Placement de pôles,	Chapitre 4
Commande linéaire quadratique, Commande par modèle interne	
Analyse fréquentielle, Robustesse	Chapitre 5
Régulateurs améliorés, Prédicteur de Smith,	Chapitre 6
Cascade, Feedforward	
Représentation d'état, Commandabilité, Observabilité,	Chapitre 7
Réalisations et réduction de modèle	

Partie II

Commande multivariable	Chapitre 8
par matrice de fonctions de transfert	

Partie III

Généralités sur le temps discret,	Chapitre 9
Traitement du signal	
Principes d'identification	Chapitre 10
Modèles pour l'identification	Chapitre 11
Algorithmes d'identification	Chapitre 12

Partie IV

Placement de pôles discret, PID discret,	Chapitre 13
Commande par modèle interne discrète	
Commande optimale,	Chapitre 14
Commande continue LQ et LQG,	
Commande discrète LQ et LQG,	
Commande prédictive généralisée monovariable	Chapitre 15
Commande prédictive multivariable basée sur le modèle	Chapitre 15 Chapitre 16

Partie V

Commande non linéaire	Chapitre 17
Observateurs non linéaires, estimateurs statistiques	Chapitre 18

Partie VI

ſ	Réacteurs	Chapitre 19
	Colonnes de distillation	Chapitre 20
	Exemples de procédés, problème-tests	Chapitre 21

Tableau 1: Contenu des chapitres.

s'achève sur les concepts de représentation d'état pour les systèmes linéaires et la commandabilité et l'observabilité (chapitre 7). Certaines parties de chapitres plus délicates peuvent être abordées dans une lecture ultérieure, comme la robustesse, la commande par placement de pôles ou la commande linéaire quadratique.

La partie II ne concerne en fait qu'un chapitre traitant de la commande multi-

variable par matrice de fonctions de transfert, continues en général. Ce choix est effectué à cause de la pratique assez courante de représentation choisie en commande des procédés. Le chapitre présente essentiellement des concepts généraux sur la manière d'aborder la commande multivariable. D'autres types de commande multivariable sont abordés dans des chapitres spécifiques: la commande linéaire quadratique et linéaire quadratique gaussienne (chapitre 14), la commande prédictive basée sur le modèle (chapitre 16) et la commande non linéaire multivariable (chapitre 17). En fait, il est possible d'aborder la troisième partie avant la seconde partie.

La partie III commence par un exposé de traitement du signal dont les concepts généraux sont indispensables en commande et en identification. Ensuite, les aspects généraux de la commande numérique et de l'échantillonnage sont traités et les fonctions de transfert discrètes y sont introduites (chapitre 9). Le reste de la partie III est consacré à l'identification en temps discret. D'abord, les principes de l'identification sont explicités (chapitre 10), puis différents types de modèles sont présentés (chapitre 11). Enfin, les principaux algorithmes d'identification paramétrique sont détaillés avec de nombreuses indications sur les précautions d'utilisation (chapitre 12). Différents types d'entrées utiles à l'identification y sont explicités. L'identification paramétrique d'un réacteur chimique est présentée. L'identification est traitée dans le cadre mono-entrée mono-sortie sauf en ce qui concerne le filtre de Kalman.

Dans la partie IV, plusieurs types classiques de commandes numériques sont étudiés. Le chapitre 13 décrit le placement de pôles et le PID numérique, la commande à modèle interne discrète comme des commandes monovariables avec application à un même réacteur chimique. Dans le chapitre 14, la commande optimale multivariable est considérée dans le cadre général de l'optimisation dynamique et la commande linéaire quadratique gaussienne aussi bien continue que discrète en découle sous la forme d'une commande multivariable, avec application à une colonne de distillation extractive à deux entrées et deux sorties. Deux types de commande prédictive sont étudiés. Dans le chapitre 15, la commande prédictive généralisée monovariable est étudiée avec application au réacteur chimique précédemment cité. Le chapitre 16 traite la commande prédictive basée sur le modèle, multivariable, permettant de prendre en compte des contraintes, souvent utilisée dans l'industrie, présentée sous plusieurs formes. Un exemple didactique multivariable est présenté. Deux applications à un réacteur de cracking catalytique (FCC) multivariable sont démontrées pour deux types différents de commande prédictive basée sur le modèle.

La partie V concerne la commande non linéaire présentée dans le cadre de la géométrie différentielle (chapitre 17) et les observateurs d'état (chapitre 18). Il s'agit de développements récents en commande, potentiellement très puissants. Pour faciliter son approche, plusieurs concepts sont analysés du point de vue linéaire, puis la commande non linéaire pour un système mono-entrée mono-sortie est étudiée avec la linéarisation entrée-états et entrée-sortie. La commande non linéaire multivariable est esquissée. L'estimation des états est nécessaire en commande non linéaire. Le chapitre 18 sur les observateurs ne concerne pas seulement le filtre linéaire de Kalman décrit dans la partie III, mais les observateurs non linéaires dont les filtres de Kalman étendu, inodore et d'ensemble, l'observateur à grand gain, l'estimateur à horizon glissant, des estimateurs de type Monte-Carlo ainsi que des estimateurs statistiques.

La partie VI est relative à deux grandes classes de procédés chimiques: les réacteurs et les colonnes de distillation. Dans les parties IV et V, l'identification linéaire et la commande linéaire avaient été appliquées au réacteur chimique décrit en détail dans le chapitre 19. Dans le chapitre 19, premier de la partie VI, l'utilisation d'une méthode de commande non linéaire, basée sur le modèle de connaissance du procédé, couplée avec un observateur d'états, est explicitée sur un réacteur chimique et un réacteur biologique. Le chapitre 20 balaie les méthodes de commandes utilisées en distillation, depuis les années 1970 jusqu'à l'époque actuelle marquée par l'utilisation industrielle de la commande non linéaire. De plus, dans le chapitre 21, un ensemble d'exemples et de problème-tests permettant de tester les différentes méthodes de commande décrites est fourni et conclut l'ouvrage.

A l'intention des lecteurs

L'auteur remercie les lecteurs, étudiants ou professeurs, qui ont bien voulu faire part de leurs remarques et corrections permettant d'améliorer les deux premières éditions. D'autre part, les errata des éditions successives sont disponibles sur le site web de l'auteur:

http://jp.corriou.free.fr

et les lecteurs souhaitant faire part de leurs remarques y trouveront en outre les adresses électroniques de l'auteur.

Remerciements

A travers l'enseignement que l'auteur dispense à l'Ecole Nationale Supérieure des Industries Chimiques, à travers les contacts qu'il entretient avec de nombreux automaticiens, à travers sa connaissance des industries de procédés, il a pu se rendre compte de la difficulté de faire partager les concepts de l'automatique aux ingénieurs de formation chimique ou de génie des procédés. En effet, l'ingénieur en charge des procédés doit aussi maîtriser un grand nombre de disciplines, chimie, génie des procédés, mécanique des fluides, thermique qui lui permettent de comprendre le fonctionnement de son procédé ou d'expliquer les disfonctionnements qu'il observe. Si ce livre peut être utile aux étudiants en commande des procédés qu'ils soient issus du génie des procédés ou plutôt automaticiens, aux ingénieurs en charge des procédés, aux thésards débutant en commande des procédés, le but fixé par l'auteur sera atteint.

L'auteur tient à remercier ses nombreux collègues de l'ENSIC et du Laboratoire des Sciences du Génie Chimique qui l'ont encouragé dans sa démarche lors de la première édition, en particulier le directeur de l'ENSIC A. Storck et le directeur du LSGC D. Tondeur. Il n'oublie pas tout le personnel pour le climat agréable de collaboration, les informaticiens qui l'ont aidé en particulier dans l'installation de LATEX et Linux. Il remercie tous les développeurs mondiaux de LATEX et Linux qui ont su créer des outils aussi efficaces. Il remercie ses plus proches collègues des groupes successifs TASC (Traitement et Acquisition de l'information chimique, Simulation et Commande des procédés) du LSGC et ODCA (Optimisation Dynamique et Commande Avancée des procédés) du LRGP, ses thésards, en particulier par ordre d'ancienneté K. Abidi, Z.L. Wang, S. Lucena, C. Gentric, M. Ben Thabet, A. Maidi, qui ont bien voulu s'intéresser à la commande non linéaire

de procédés chimiques ou biologiques, à la commande des systèmes à paramètres distribués, et qui ont partagé difficultés et satisfactions, et ses autres thésards en espérant qu'ils n'ont pas trop souffert durant la longue rédaction.

L'auteur tient également à remercier ses collègues qui ont bien voulu relire certaines parties de la première édition et faire part de leurs remarques, J. Ragot, professeur à l'Institut National Polytechnique de Lorraine, P. Sibille, maître de conférences à l'Université Henri Poincaré, Nancy I , G. Thomas, professeur à l'Ecole Centrale de Lyon, S. Rohani, professeur à University of Western Ontario, U. Volk, ingénieur à Shell Godorf et spécialiste de commande prédictive. Je remercie S. Othman, maître de conférences à l'Université de Lyon, spécialiste de l'observateur à grand gain. Que M. Alamir, chercheur au Laboratoire d'Automatique de Grenoble qui a accepté la lourde tâche de relire la totalité de la seconde édition, trouve ici l'expression de ma profonde gratitude.

Enfin et surtout, l'auteur dédie ce livre à ses enfants Alain et Gilles et ses proches qui ont su faire preuve de tant de patience et de compréhension face à l'investissement considérable lié à la réalisation de cet ouvrage.

Table des matières

L	Co	mma	nde en temps continu
1			ion dynamique des procédés
	1.1		nces
	1.2		t de la commande des procédés
	1.3		ption d'un procédé du point de vue de l'automaticien
	1.4		fication des modèles
	1.5		sentation d'état
	1.6	_	ples de modèles en génie des procédés
		1.6.1	Systèmes à paramètres localisés
		1.6.2	Procédés à paramètres distribués
		1.6.3	Degrés de liberté
	1.7		ité des procédés
	1.8		d'un procédé
	1.9		Formation de Laplace
		1.9.1	Linéarisation et variables d'écart
		1.9.2	Quelques propriétés de la transformation de Laplace
		1.9.3	Fonctions de transfert
		1.9.4	Pôles et zéros d'une fonction de transfert $\dots \dots$
		1.9.5	Analyse qualitative de la réponse d'un système
	1.10		nes linéaires dans l'espace d'état
		1.10.1	Cas général
			Représentation analogique
	1.11		ortement dynamique de procédés simples
		1.11.1	Systèmes de premier ordre
		1.11.2	Systèmes intégrateurs
			Systèmes de second ordre
			Systèmes d'ordre supérieur
		1.11.5	Identification de modèles continus de procédés
;	Con	nmand	le linéaire à contre réaction
	2.1	Conce	ption d'une boucle de contre réaction
		2.1.1	Diagramme de blocs de la boucle de contre réaction
		2.1.2	Types généraux de régulateurs
		2.1.3	Organes de mesures: capteurs
		2.1.4	Lignes de transmission
		2.1.5	Actionneurs
	2.2	Diagra	amme de blocs, graphes de fluence, règles de calcul
	2.3	_	nique des procédés commandés par contre réaction

		2.3.1	Etude des différentes actions	88
		2.3.2	Influence de l'action proportionnelle	88
		2.3.3	Influence de l'action intégrale	
		2.3.4	Influence de l'action dérivée	
		2.3.5	Résumé des caractéristiques des régulateurs	99
3	Ana	lyse de	e stabilité	105
	3.1	Cas d'	un système défini par sa fonction de transfert	105
	3.2	Analys	se dans l'espace d'état	106
		3.2.1	Analyse d'un système linéaire dans l'espace d'état	
		3.2.2	Analyse générale pour un système continu non linéaire	107
		3.2.3	Cas d'un système continu linéaire	
		3.2.4	Cas d'un système continu non linéaire: le réacteur de polymér	
			sation	
	3.3	Analys	se de stabilité des systèmes à rétroaction	119
		3.3.1	Critère de Routh-Hurwitz	
		3.3.2	Analyse du lieu des racines	
		3.3.3	Méthode fréquentielle	
4	Syn	thèse d	les régulateurs par bouclage	129
	4.1		es de performance	129
	4.2		réristiques de la réponse transitoire	
	4.3		es d'intégrale d'erreur et conception de la commande	
	4.4		du régulateur PID	
		4.4.1	Remarques générales	
		4.4.2	Recommandations	
	4.5	Réglag	ge des régulateurs PID	
		4.5.1	Réglage par essai-erreur	
		4.5.2	Méthode d'oscillation entretenue	
		4.5.3	Méthode d'oscillation par relais	
		4.5.4	Méthode de la courbe de réaction du procédé	
		4.5.5	Réglage de Tavakoli et Fleming pour les régulateurs PI	
		4.5.6	Réglage robuste pour régulateurs PID	
	4.6		pration des PID	
		4.6.1	Régulateur PID avec action dérivée sur la sortie mesurée .	
		4.6.2	Utilisation d'une trajectoire de référence	
		4.6.3	Régulateur PID discrétisé	
		4.6.4	Anti-emballement du régulateur	
		4.6.5	Régulation PID par commande tout ou rien	
		4.6.6	Régulation de pH	
	4.7		de de synthèse directe	
	4.8		ande par modèle interne	
	4.9		nent de pôles	
	1.0	4.9.1	Robustesse de la commande par placement de pôles	
		4.9.2	Régulateur à retour de sortie unitaire	
	4.10		ande linéaire quadratique	
	1.10		Comportement en régulation	
			Comportement en poursuite	
		1.10.2	Comportoment on poursuite	±10

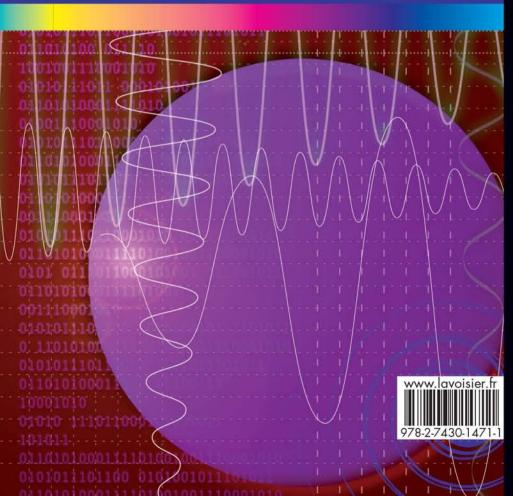
5	Ana	llyse fréquentielle	181					
	5.1	Réponse d'un système linéaire à une entrée sinusoïdale	181					
		5.1.1 Cas d'un procédé de premier ordre	181					
		5.1.2 Note sur les nombres complexes	183					
		5.1.3 Cas d'un procédé linéaire quelconque	184					
		5.1.4 Cas de systèmes linéaires en série	185					
	5.2	Représentation graphique	185					
		5.2.1 Diagramme de Bode	185					
		5.2.2 Système d'ordre n	187					
		5.2.3 Diagramme de Nyquist	189					
		5.2.4 Système d'ordre n	191					
		5.2.5 Diagramme de Black	192					
	5.3	Caractérisation d'un système par analyse fréquentielle	192					
	5.4	Réponse fréquentielle des régulateurs à rétroaction	193					
	0.1	5.4.1 Régulateur proportionnel	193					
		5.4.2 Régulateur proportionnel-intégral	193					
		5.4.3 Régulateur proportionnel-dérivé idéal	194					
		5.4.4 Régulateur proportionnel-intégral-dérivé	196					
	5.5	Critère de stabilité de Bode	198					
	5.6	Marge de gain et marge de phase	203					
	0.0	5.6.1 Marge de gain	203					
		5.6.2 Marge de phase	204					
	5.7	Critère de stabilité de Nyquist	204					
	5.8	Réponse fréquentielle en boucle fermée	211					
	5.9	Principe de modèle interne	217					
		Robustesse						
		Résumé pour la conception	$\frac{217}{232}$					
	0.11	rtesume pour la conception	202					
6	Amélioration des systèmes de commande							
	6.1	Compensation du retard pur	235 235					
	6.2	Compensation du phénomène de réponse inverse						
	6.3	Commande en cascade	239					
	6.4	Commande sélective	245					
	6.5	Commande partagée	246					
	6.6	Commande par anticipation ("feedforward")	246					
	0.0	6.6.1 Généralités						
		6.6.2 Application en distillation						
		6.6.3 Synthèse d'un régulateur par anticipation	248					
		6.6.4 Réalisation d'un régulateur par anticipation	250					
		6.6.5 Commande par anticipation et rétroaction	252					
	6.7	Commande par rapport	253					
	0.,	Commando par rapporo	200					
7	Rep	résentation d'état, commandabilité, observabilité	257					
	7.1	Représentation d'état	257					
		7.1.1 Système monovariable	257					
		7.1.2 Système multivariable	258					
	7.2	Commandabilité	259					
	7.3	Observabilité	263					
	7.4	Réalisations	266					
	7.5	Remarque sur la commandabilité et l'observabilité en discret	271					

II	\mathbf{C}	ommande multivariable	273
8	Cor	nmande multivariable par matrice de fonctions de transfert	275
	8.1	Représentation d'un procédé multivariable par matrice de fonctions	
		de transfert	275
	8.2	Etude de stabilité	277
		8.2.1 Forme de Smith-McMillan	278
		8.2.2 Pôles et zéros d'une matrice de fonctions de transfert	278
		8.2.3 Critère de Nyquist généralisé	278
		8.2.4 Lieux caractéristiques	279
		8.2.5 Cercles de Gershgorin	280
		8.2.6 Indice de Niederlinski	281
	8.3	Interaction et découplage	281
		8.3.1 Découplage pour un système $2 \times 2 \dots \dots \dots$	282
		8.3.2 Rejet de perturbations	283
		8.3.3 Décomposition en valeurs singulières	283
		8.3.4 Matrice de gain relatif	284
		8.3.5 Cercles de Gershgorin et interaction	290
	8.4	Robustesse multivariable	290
	8.5	Etude de robustesse d'une colonne de distillation $2 \times 2 \dots \dots$	294
		8.5.1 Analyse du découplage simplifié	294
		8.5.2 Analyse du découplage idéal	295
		8.5.3 Analyse du découplage unilatéral	296
		8.5.4 Comparaison des trois découplages précédents	296
	8.6	Synthèse d'une commande multivariable	296
	0.0	8.6.1 Réglage des correcteurs	297
	8.7	Commande multivariable discrète par modèle interne	298
II	T I	dentification en temps discret	303
9	Gér	néralités sur les signaux	305
	9.1	Transformation de Fourier et traitement du signal	305
		9.1.1 Transformée de Fourier continue	306
		9.1.2 Transformée de Fourier discrète	311
		9.1.3 Signaux aléatoires	315
		9.1.4 Signaux aléatoires stationnaires	316
		9.1.5 Résumé	317
	9.2	Echantillonnage	318
		9.2.1 Conversions AN et NA	318
		9.2.2 Choix de la période d'échantillonnage	319
	9.3	Filtrage	325
		9.3.1 Filtre de premier ordre	326
		9.3.2 Filtre de deuxième ordre	327
		9.3.3 Filtre à moyenne mobile	327
		9.3.4 Filtre ébarbeur	328
	9.4	Temps discret et modèles de différences finies	329
	9.5	Différentes représentations discrètes d'un système	330
		9.5.1 Représentation discrète: Transformation en z	330
		9.5.2 Conversion d'une description continue en temps discret	349

		9.5.3	Opérateurs	352
10		-	de l'identification	359
	10.1		ption du système	
			Système sans perturbation	359
		10.1.2	Représentation d'une perturbation	360
	10.2		fication non paramétrique	361
			$\label{eq:continuous} Identification fréquentielle \ . \ . \ . \ . \ . \ . \ . \ . \ . \ $	361
			Identification par analyse de corrélation	362
			Identification spectrale	363
	10.3		fication paramétrique	367
			Principes de prédiction	367
			Prédiction à un pas	367
		10.3.3	Prédiction à p pas	372
11			t méthodes pour l'identification paramétrique ure des modèles pour l'identification	375
	11.1		étrique	375
		-	Modèles linéaires de fonctions de transfert	
			Modèles pour l'estimation dans l'espace d'état	
	11.2		es de systèmes linéaires dépendant du temps	393
			isation de modèles non linéaires dépendant du temps	393
			pes de l'estimation paramétrique	394
			Minimisation des erreurs de prédiction	
			Régressions linéaires et moindres carrés	
			Méthode du maximum de vraisemblance	398
			Corrélation des erreurs de prédiction avec les données passée	
			Méthode de la variable instrumentale	
12			es d'estimation paramétrique	407
	12.1	Régres	ssion linéaire et moindres carrés	407
			des de gradient	409
		12.2.1	Méthode de gradient basée sur l'erreur a priori	409
			Méthode de gradient basée sur l'erreur a posteriori	413
	12.3	Algori	thmes récursifs	415
			Moindres Carrés Récursifs Simples	
			Moindres Carrés Récursifs Etendus	
		12.3.3	Moindres Carrés Récursifs Généralisés	423
			Maximum de Vraisemblance Récursif	424
			Méthode d'Erreur de Prédiction Récursive	425
			Méthode de la Variable Instrumentale	428
			Méthode d'erreur de sortie	428
			tification des algorithmes	429
			tion	431
	12.6		d'entrée pour l'identification	432
			Suite binaire pseudo aléatoire	432
	40 =		Autres suites pour l'identification	434
	12.7	-	bles d'identification	440
			Exemple académique d'un système de second ordre	440
		1272	Identification d'un réacteur chimique simulé	445

IV	<i>'</i> (Commande en temps discret	451
13	Con	amande numérique	453
	13.1	Commande par placement de pôles	453
		13.1.1 Influence de la position des pôles	453
		13.1.2 Synthèse de la commande par placement des pôles	453
		13.1.3 Relation entre le placement de pôles et le retour d'état	460
		13.1.4 Synthèse générale du placement de pôles	463
		13.1.5 Régulateur PID numérique	470
	13.2	Commande par modèle interne discrète	472
		Généralités sur la commande adaptative	479
14	Con	amande optimale	483
	14.1	Introduction	483
	14.2	Position du problème	484
		Méthode variationnelle classique dans le cadre mathématique	486
		14.3.1 Variation du critère	487
		14.3.2 Problème variationnel sans contraintes, à limites fixes	488
		14.3.3 Problème variationnel avec contraintes, cas général	489
		14.3.4 Equation de Hamilton-Jacobi	491
	14.4	Commande optimale	493
		14.4.1 Méthodes variationnelles	493
		14.4.2 Variation du critère	494
		14.4.3 Equations d'Euler	496
		14.4.4 Condition de Weierstrass et maximisation du hamiltonien .	498
		14.4.5 Equation de Hamilton-Jacobi	498
		14.4.6 Principe du maximum	501
		14.4.7 Arcs singuliers	503
		14.4.8 Problèmes numériques	510
	14.5	Programmation dynamique	515
		14.5.1 Programmation dynamique classique	515
		14.5.2 Equation de Hamilton-Jacobi-Bellman	520
	14.6	Commande linéaire quadratique	521
		14.6.1 Commande linéaire quadratique en temps continu	521
		14.6.2 Commande linéaire quadratique gaussienne	528
		14.6.3 Commande linéaire quadratique en temps discret	535
15	Con	amande prédictive	547
		Intérêt de la commande prédictive généralisée	547
		Bref aperçu de l'évolution de la commande prédictive	548
		Commande prédictive généralisée simple	549
		15.3.1 Présentation théorique	549
		15.3.2 Exemple numérique: Commande prédictive généralisée d'un	
		réacteur chimique	552
		15.3.3 La CPG vue comme un placement de pôles	554
	15.4	Commande prédictive généralisée avec modèle de référence multiple	555
		15.4.1 Présentation théorique	555
		15.4.2 Exemple numérique: Commande prédictive généralisée avec	
		modèle de performance d'un réacteur chimique	558
	15.5	Commande avec modèle de référence sur l'état partiel	559

	15.6	Comm	ande prédictive généralisée d'un réacteur chimique	560
16	Con	ımand	e prédictive basée sur le modèle	567
	16.1	Une vi	ue générale de la commande prédictive basée sur le modèle .	567
	16.2	Comm	ande prédictive linéaire basée sur le modèle	573
		16.2.1	En absence de contraintes	573
		16.2.2	En présence de contraintes	573
		16.2.3	Brève description de IDCOM	573
			Commande dynamique matricielle (Dynamic Matrix Control DMC)	574
		1625	Commande matricielle dynamique quadratique: Quadratic	014
		10.2.0	Dynamic Matrix Control (QDMC)	580
		1626	Formulation dans l'espace d'état de DMC	585
			Commande prédictive linéaire dans l'espace d'état: OBMPC	
			Commande prédictive linéaire basée sur le modèle en tant	301
		10.2.8	qu'optimisation générale	590
	16 2	Comorno		590 591
	10.5		ande prédictive non linéaire	591
		10.3.1	Commande dynamique matricielle non linéaire: Nonlinear	
			Quadratic Dynamic Matrix Control	F01
		1000	(NLQDMC)	591
	10.4		Autres approches de la commande prédictive non linéaire .	593
	16.4		ande prédictive basée sur le modèle d'un FCC	596
		16.4.1	Modélisation du FCC	596
\mathbf{V}	\mathbf{C}_{0}	omma	ande non linéaire	611
•				
•	Con	nmand	e géométrique non linéaire	611 613
•	Con	nmand Quelqı	e géométrique non linéaire les notions de linéaire utiles en non	613
•	Con	nmand Quelqu linéair	e géométrique non linéaire nes notions de linéaire utiles en non e	613 614
•	Con	nmand Quelqu linéair 17.1.1	e géométrique non linéaire ues notions de linéaire utiles en non e	613 614 614
•	Con	nmand Quelqu linéair 17.1.1 17.1.2	e géométrique non linéaire ues notions de linéaire utiles en non e	613 614 614 615
•	Con	Quelquelquelquelquelquelquelquelquelquelq	e géométrique non linéaire ues notions de linéaire utiles en non e	613 614 614 615 616
•	Con	Quelquelinéaire 17.1.1 17.1.2 17.1.3 17.1.4	e géométrique non linéaire nes notions de linéaire utiles en non e	613 614 614 615 616 618
•	Con	nmand Quelqu linéair 17.1.1 17.1.2 17.1.3 17.1.4 17.1.5	e géométrique non linéaire ues notions de linéaire utiles en non e	613 614 614 615 616 618 618
•	Con	Quelquelinéaire 17.1.1 17.1.2 17.1.3 17.1.4 17.1.5 17.1.6	e géométrique non linéaire ues notions de linéaire utiles en non e	613 614 614 615 616 618 618
•	Con 17.1	Quelqu linéair 17.1.1 17.1.2 17.1.3 17.1.4 17.1.5 17.1.6 17.1.7	e géométrique non linéaire ues notions de linéaire utiles en non e	613 614 614 615 616 618 619 621
•	Con 17.1	Quelqu linéair 17.1.1 17.1.2 17.1.3 17.1.4 17.1.5 17.1.6 17.1.7 Comm	e géométrique non linéaire ues notions de linéaire utiles en non e	613 614 615 616 618 618 619 621 621
•	Con 17.1	Quelquelquelquelquelquelquelquelquelquelq	e géométrique non linéaire nes notions de linéaire utiles en non e	613 614 614 615 616 618 619 621 621
•	Con 17.1	Quelquelquelquelquelquelquelquelquelquelq	e géométrique non linéaire nes notions de linéaire utiles en non e	613 614 614 615 616 618 619 621 621 621 623
•	Con 17.1	Quelquelquelquelquelquelquelquelquelquelq	e géométrique non linéaire ues notions de linéaire utiles en non e	613 614 614 615 616 618 619 621 621 623 624
•	Con 17.1	Quelquelquelquelquelquelquelquelquelquelq	e géométrique non linéaire ues notions de linéaire utiles en non e	613 614 614 615 616 618 619 621 621 623 624 625
•	Con 17.1	Quelqu linéair 17.1.1 17.1.2 17.1.3 17.1.4 17.1.5 17.1.6 17.1.7 Comm 17.2.1 17.2.2 17.2.3 17.2.4 17.2.5	e géométrique non linéaire ues notions de linéaire utiles en non e	613 614 615 616 618 618 619 621 621 623 624 625 626
•	Con 17.1	Quelqu linéair 17.1.1 17.1.2 17.1.3 17.1.4 17.1.5 17.1.6 17.1.7 Comm 17.2.1 17.2.2 17.2.3 17.2.4 17.2.5 17.2.6	e géométrique non linéaire ues notions de linéaire utiles en non e	613 614 614 615 616 618 619 621 621 623 624 625 626 627
•	Con 17.1	Quelqu linéair 17.1.1 17.1.2 17.1.3 17.1.4 17.1.5 17.1.6 17.1.7 Comm 17.2.1 17.2.2 17.2.3 17.2.4 17.2.5 17.2.6 17.2.7	e géométrique non linéaire ues notions de linéaire utiles en non e	613 614 615 616 618 618 619 621 621 623 624 625 626
•	Con 17.1	Quelqu linéair 17.1.1 17.1.2 17.1.3 17.1.4 17.1.5 17.1.6 17.1.7 Comm 17.2.1 17.2.2 17.2.3 17.2.4 17.2.5 17.2.6 17.2.7	e géométrique non linéaire nes notions de linéaire utiles en non e	613 614 614 615 616 618 619 621 621 623 624 625 626 627
•	Con 17.1	Quelquelquelquelquelquelquelquelquelquelq	e géométrique non linéaire les notions de linéaire utiles en non e	613 614 614 615 616 618 619 621 621 623 624 625 626 627
•	Con 17.1	Quelquelquelquelquelquelquelquelquelquelq	e géométrique non linéaire nes notions de linéaire utiles en non e	613 614 614 615 616 618 619 621 621 622 623 624 625 626 627 628
•	Con 17.1	Quelquelquelquelquelquelquelquelquelquelq	e géométrique non linéaire les notions de linéaire utiles en non e	613 614 614 615 616 618 619 621 621 622 623 624 625 626 627 628


		17.2.11 Stabilité asymptotique	634
		17.2.12 Poursuite d'une trajectoire de référence	636
		17.2.13 Découplage par rapport à une perturbation	637
		17.2.14 Cas de systèmes à non-minimum de phase	638
		17.2.15 Commande globalement linéarisante	638
	17.3	Commande non linéaire multivariable	639
		17.3.1 Degré relatif	640
		17.3.2 Changement de coordonnées	641
		17.3.3 Forme normale	641
		17.3.4 Dynamique des zéros	642
		17.3.5 Linéarisation exacte par retour d'état et difféomorphisme .	642
		17.3.6 Commande non linéaire parfaitement découplée par retour	
		d'état statique	643
		17.3.7 Obtention d'un degré relatif par extension dynamique	644
		17.3.8 Commande adaptative non linéaire	645
	17.4	Applications de commande non linéaire	
		géométrique	646
18		ervateurs d'état	651
	18.1	Introduction	651
		18.1.1 Capteurs indirects	652
		18.1.2 Principe d'un observateur	652
		Estimation paramétrique	653
	18.3	Estimation statistique	653
		18.3.1 A propos des données	654
		18.3.2 Analyse en Composantes Principales	654
		18.3.3 Moindres Carrés Partiels (Partial Least Squares)	656
	18.4	Observateurs	658
		18.4.1 Observateur de Luenberger	658
		18.4.2 Filtre de Kalman linéaire	661
		18.4.3 Filtre de Kalman étendu (EKF) sous forme continue-discrète	
		18.4.4 Filtre de Kalman inodore	665
		18.4.5 Filtres à particules	668
		18.4.6 Filtre d'ensemble de Kalman	673
		18.4.7 Observateur globalement linéarisant	
		18.4.8 Observateur à grand gain	
	10 5	18.4.9 Estimation à horizon glissant	
	18.5	Conclusion	683
V	I A	Applications aux procédés	691
19	Con	amande non linéaire de réacteurs avec estimation d'état	693
_0		Introduction	693
		Réacteur chimique	693
		19.2.1 Modèle du réacteur chimique	694
		19.2.2 Position du problème de commande	695
		19.2.3 Obtention de la loi de commande	697
		19.2.4 Estimations des états	698
		19.2.5 Résultats de simulation	700

	19.3	Réacte	eur biologique	704
		19.3.1	Introduction	704
		19.3.2	Modèle dynamique du réacteur biologique	705
		19.3.3	Synthèse de la loi de commande non linéaire	706
		19.3.4	Conditions de simulation	709
		19.3.5	Résultats de simulation	710
		19.3.6	Conclusion	710
20	Con	ımand	e de colonnes de distillation	715
	20.1	Généra	alités sur le fonctionnement des colonnes de distillation	715
	20.2	Modèl	e dynamique de la colonne de distillation	718
	20.3	Généra	alités sur la conduite des colonnes de distillation	722
	20.4	Différe	ents types de commande des colonnes de distillation	723
		20.4.1	Commande monovariable	723
		20.4.2	Commande duale par découplage	724
		20.4.3	La colonne vue comme un système 5×5	728
		20.4.4	Commande numérique linéaire	732
		20.4.5	Commande prédictive basée sur le modèle	734
		20.4.6	Modèles bilinéaires	734
		20.4.7	Commande non linéaire	737
	20.5	Conclu	ision	740
21	Exe	mples	et problème-tests de procédés typiques	745
	21.1	Procéd	lés simple entrée-simple sortie	745
		21.1.1	Description par fonctions de transfert	745
		21.1.2	Description par un modèle de connaissance	746
		21.1.3	Description par un modèle linéaire dans l'espace d'état	751
	21.2	Procéd	dés multivariables	752
		21.2.1	Matrices de fonctions de transfert continues	752
		21.2.2	Description par un modèle linéaire dans l'espace d'état	754
		21.2.3	Description par un modèle de connaissance dans	
			l'espace d'état	755
		21.2.4	Modèles continus dans l'espace d'état	756

Cette troisième édition a été enrichie par l'introduction de nouveaux exemples et de méthodes récentes. En un volume unique, le livre propose une synthèse progressive et approfondie des principales méthodes de commande exposées sous forme théorique et illustrées sur des exemples variés de procédés : réacteurs chimiques, biologiques, de polymérisation, craqueur catalytique, colonne de distillation. Les six parties couvrent la modélisation et la commande continue monovariable, la commande multivariable par fonction de transfert, l'identification et la commande en temps discret, la commande optimale et prédictive multivariable, la commande non linéaire et les observateurs d'état.

Cet ouvrage s'adresse aussi bien aux étudiants de 2^e et 3^e cycle qu'aux chercheurs, enseignants et ingénieurs.

Jean-Pierre Corriou est professeur à l'École Nationale Supérieure des Industries Chimiques de Nancy – Université de Lorraine, et effectue des travaux de recherche en simulation et commande des procédés au sein du Laboratoire de Réactions et Génie des Procédés.

