Max Feinberg, Michel Laurentie et Serge Rudaz

Labo-Stat 2

Guide pour l'incertitude de mesure

LABO-STAT 2

Guide pour l'incertitude de mesure

Max Feinberg Michel Laurentie Serge Rudaz

editions.lavoisier.fr

Chez le même éditeur

Les critères microbiologiques des denrées alimentaires (2° éd.) E. Dromigny, 2021

Agents antimicrobiens et sécurité sanitaire des aliments Collection Sciences et techniques agroalimentaires M.-N. Bellon-Fontaine, 2021

Explorations en biochimie médicale : cas cliniques

D. Bonnefont-Rousselot, 2021

La cytométrie en flux (2^e éd.)

J.-F. Mayol, 2020

Explorations en biochimie médicale : interprétations et orientations diagnostiques

D. Bonnefont-Rousselot, 2019

Explorations en biochimie médicale : cas cliniques

V. Annaix, 2019

L'autocontrôle microbiologique en restauration collective

E. Dromigny, 2019

Labo-Stat : guide de validdation des méthodes d'analyse

M. Feinberg, 2009

Direction éditoriale : Jean-Marc Bocabeille

Mise en pages : Nord Compo

© Lavoisier 2022 ISBN: 978-2-7430-2649-3

Table des matières

Intro	duction	XI
	Première partie : Estimer l'incertitude de mesure	
	Chapitre 1 Contexte	
	Context	
1.1.	Rôle des sciences analytiques	3
1.2.	Incertitude de mesure et sciences analytiques	5
1.3.	Niveaux de la qualité des analyses	6
1.4.	Classification des méthodes	7
1.5.	Processus analytique et méthode d'analyse	9
	Chapitre 2	
	Assurance qualité et laboratoires	
2.1.	Évolution du rôle des laboratoires d'analyse	15
_,,,	2.1.1. Accidents industriels et sciences analytiques	16
	2.1.2. Directives « Seveso »	18
2.2.	Harmonisation des méthodes	19
	2.2.1. Rôle central de la normalisation	20
	2.2.2. Bonnes Pratiques de Laboratoire (BPL)	23
	2.2.3. Accréditation	24
2.3.	Normes analytiques	26
	2.3.1. Norme au sens strict	26
	2.3.2. Norme au sens large ou pseudo-norme	28
2.4.	Origine de la validation	31
2.5.	Laboratoires d'analyse et économie	32

	Chapitre 3 Validation des méthodes	
3.1.	Rendre les résultats d'analyses comparables	35 35
3.2.	3.1.2. Élaborer des procédures de validation	36 38
5.2.	3.2.1. Terminologie de base	38
	3.2.2. Incohérences du vocabulaire de validation	39
3.3.	Stratégies de validation	42
	3.3.1. Validation multicritère	43 46
3.4.	Rappels sur les écarts-types de fidélité	48
	Chapitre 4	
	Profil d'exactitude	
4.1.	Principes du profil d'exactitude	55
4.2.	Exemple d'un profil d'exactitude	58
4.3. 4.4.	Intervalles statistiques de dispersion	63 65
4.5.	Intervalle à couverture garantie β - γ	68
4.6.	Points importants du profil d'exactitude	72
	4.6.1. Structure du plan d'expérience	72
	4.6.2. Nombre de mesures efficaces	73
	4.6.3. Probabilité(s) de couverture d'un intervalle	78
	4.6.4. Choix du type d'intervalle	81
	Chapitre 5	
	Incertitude de mesure et sciences analytiques	
5.1. 5.2.	Origine du concept d'incertitude de mesure	85 89
5.2. 5.3.	Procédure générale d'estimation de l'incertitude	91
5.4.	Étape 1. Identification du mesurande	93
5.5.	Étape 2. Composantes de l'incertitude	96
5.6.	Étape 3. Quantification des composantes	97
	5.6.1. Évaluation de type A : empirique	98
- 7	5.6.2. Évaluation de type B : déterministe	100
5.7.	Étape 4. Calcul de l'incertitude composée	102 102
	5.7.2. Incertitude élargie	102
	5.7.3. Arrondissage du résultat	109
5.8.	Exactitude, erreur totale et incertitude	111
59	Probabilité et répétition	113

Table des matières VII

	Chapitre 6	
	Procédures d'estimation de l'incertitude	
6.1.	Procédures existantes	119
6.2.	Utilisation du profil d'exactitude	122
	6.2.1. Étape 1. Modèle de mesure « générique »	122
	6.2.2. Étape 2. Diagramme de cause à effet générique	123
	6.2.3. Étapes 3 et 4. Calcul de l'incertitude composée	128
6.3.	Utilisation des cartes de contrôle	132
	6.3.1. Principes de la carte de Shewhart	132
	6.3.2. Intervalles de dispersion et cartes de contrôle	135
	6.3.3. Estimation de l'incertitude du matériau de référence	137
6.4.	Utilisation des comparaisons inter-laboratoires	141
	6.4.1. Essais d'aptitude (CILA)	141
	6.4.2. Analyses inter-laboratoires	142
	Chapitre 7	
	Fonctions d'incertitude et applications	
7.1.	Modèle de Horwitz	145
7.2.	Fonctions d'incertitude classiques	149
	7.2.1. Choix d'une fonction d'incertitude	149
	7.2.2. Remarques sur la fonction puissance	151
7.3.	Utilisations de l'intervalle élargi	153
	7.3.1. Estimation d'un intervalle élargi	154
	7.3.2. Mesure dont l'incertitude relative est connue	154
	7.3.3. Mesure correspondant à une limite de l'intervalle élargi.	155
7.4.	Influence du modèle d'étalonnage	156
7.5.	Influence d'un facteur de correction	159
7.6.	Influence du nombre de répétitions	165
	7.6.1. Répétition en condition de répétabilité	167
	7.6.2. Répétition en condition de fidélité intermédiaire	169
	Chapitre 8	
	Incertitude d'échantillonnage	
8.1.	Procédure de vérification de l'homogénéité	175
8.2.	Application à l'homogénéité d'une farine	176
	Chapitre 9	
	Limites de performance	
9.1.	Définitions de la limite de quantification (LOQ)	180
	9.1.1. Multiples d'un écart-type d'un blanc	180
	9.1.2. Examen visuel	181

9.2. 9.3.	9.1.3. Rapport signal/bruit 9.1.4. Approche expérimentale empirique LOQ et incertitude de mesure Capacité de détection 9.3.1. Concepts et définitions 9.3.2. Ancien mode de calcul 9.3.3. Nouveau mode de calcul 9.3.4. Exemple d'application	181 181 182 184 184 187 188 190
	Chapitre 10 Vérification de la conformité d'un échantillon	
10.1. 10.2.	Définition d'une règle de décision	193 196
	Deuxième partie : Utiliser l'incertitude de mesure	
	Chapitre 11 Prise de décision et résultat d'analyse	
11.1. 11.2. 11.3.	Limites de spécification et valeurs de référence	201 203 207
	Chapitre 12 Aspects réglementaires et juridiques	
12.1. 12.2.	3	209 214
	Chapitre 13 Mise en évidence d'une suspicion de dopage	
13.1. 13.2.	Validation de l'analyse de la testostérone	217 224
	Chapitre 14 Bilan hépatique du carbone chez les bovins	
14.1. 14.2. 14.3. 14.4.	Contraintes des études in vivo	227 229 232 233 234

Table des matières IX

	Chapitre 15 Incertitude d'une méthode d'ajouts dosés	
	Clubs d'acheteurs et contrôle qualité	237 240 240 246 248
	Chapitre 16 Contrôle officiel et incertitude de mesure	
16.1. 16.2. 16.3.	Profil d'exactitude des antibiotiques étudiés	251 252 257
	Chapitre 17 Contrôle d'un emploi abusif d'antibiotique	
17.1. 17.2. 17.3.	1	263 264 267
	Chapitre 18 Validation d'une méthode alternative	
18.1. 18.2.	« Azote protéique » des aliments	271 272
	Chapitre 19 Autres applications	
19.1 19.2. 19.3.	Incertitude du dosage des maïs OGM	277 280 283
	Chapitre 20 Incertitude des méthodes qualitatives	
20.1. 20.2.	Validation par une procédure directe	287 292
	Chapitre 21 Conclusions	
21.1. 21.2.	Rôle du nombre de répétitions	298 299

21.3.	Éducation à l'incertitude	300
	Évaluation du risque	301
21.5.	Harmonisation des méthodes d'estimation de l'incertitude	303
Référ	ences	305
Gloss	aire	319
Abré	viations	327
Index		329

Introduction

Pourquoi proposer un Guide pour l'incertitude de mesure ?

Chaque jour des millions d'analyses sont effectuées dans des laboratoires, dans tous les secteurs d'activité qu'ils soient industriels ou scientifiques. La médecine, l'agronomie, la métallurgie, l'agroalimentaire, la justice ou la pharmacie, parmi tant d'autres, utilisent des analyses. Les laboratoires, c'est vers eux que se tournent ceux qu'on appelle, selon le contexte, les prescripteurs, les donneurs d'ordre ou, de façon très générale, les utilisateurs finaux. Cette variété de désignations illustre un des problèmes récurrent, à savoir le vocabulaire utilisé par les laboratoires. Il dépend assez fortement de leur domaine d'application et, dans la mesure où ce livre prétend à une certaine universalité, nous essaierons d'utiliser les termes les mieux admis, mais sans toujours y parvenir.

Si tous ces utilisateurs finaux acceptent de payer pour obtenir des mesures et des résultats c'est bien qu'ils pensent qu'ils leur seront utiles pour prendre une décision : contrôler si un produit est conforme à une étiquette, une denrée alimentaire sans danger pour les consommateurs, un patient malade ou sain, une eau potable, un conducteur en état d'ivresse, etc.

Pour autant est-il facile et simple d'utiliser un résultat d'analyse et permet-il de prendre la bonne décision ? Quels risques un prescripteur court-il en faisant confiance à un laboratoire ? Il existe au moins trois dangers potentiels :

- Les méthodes d'analyse sont devenues très sophistiquées et font appel à des technologies complexes. Comment savoir si celle qu'emploie le laboratoire donne la bonne mesure ou, au moins, la meilleure possible ?
- Comme toute mesure, les résultats de laboratoire sont entachés d'une incertitude. Comment savoir si le laboratoire la contrôle et l'estime correctement ?
- Enfin, comment utiliser efficacement une mesure empreinte d'une incertitude ? Peut-elle servir à évaluer le risque pris lors de la décision ?

Pour le premier point, l'exemple récent de la pandémie liée au SARS-CoV-2 a montré à quel point l'absence initiale de méthodes fiables, rapides et simples, comme il en existe pour d'autres virus, rendait délicate le choix des mesures de gestion adaptées au risque de propagation.

Quelles seront les conséquences sur l'application d'une norme sanitaire pour limiter la présence de pesticides dans les aliments, si on a le choix entre une méthode qui donne des résultats avec une incertitude de mesure de 50 % et une autre de 10 %, mais pour un coût 10 fois plus élevé ? Comment le décideur devra-t-il intégrer cette information dans sa démarche ?

Les objectifs de ce guide sont donc de fournir des pistes de réponse à ces diverses questions. Il s'adresse aussi bien aux analystes qui ont besoin d'estimer l'incertitude de leurs mesures qu'aux utilisateurs finaux qui doivent comprendre comment s'en servir.

Dans la première partie, nous faisons des propositions formelles, en ce sens qu'elles indiquent pourquoi et comment estimer pratiquement l'incertitude de mesure dans les sciences analytiques. En deuxième partie, les propositions présentées sont plus personnelles et illustrent la position des auteurs de ce livre à travers une série d'exemples qui ne couvrent pas la totalité des applications possibles. La troisième partie fournit un certain nombre références permettant d'approfondir les divers thèmes traités.

Avertissement

Les feuilles de calcul Microsoft Excel® présentées dans les divers chapitres qui suivent sont hébergées sur un site dédié de l'Université de Genève :

https://ispso.unige.ch/sciences-analytiques/labo-stat2

Elles sont fournies à titre gracieux mais purement indicatif et pour faciliter le développement de feuilles de calcul personnelles. Aucune protection n'est appliquée à ces feuilles et elles ne contiennent aucune macro, afin qu'elles puissent être modifiées et employées selon les besoins de chacun. C'est pourquoi, leurs auteurs ne garantissent pas la qualité des résultats obtenus et déclinent toute responsabilité quant à une conséquence néfaste résultant de leur utilisation.

Les laboratoires d'analyse sont devenus incontournables en médecine, agronomie, environnement, pharmacie, etc. Chaque jour ils produisent des millions de résultats qui servent à prendre diverses décisions. Malgré la sophistication croissante des méthodes, des questions fondamentales demeurent sur l'emploi de ces résultats. Quel risque font-ils courir? Dans quelle mesure s'y fier? L'incertitude de mesure est le paramètre qui permet d'y répondre. Pour bien des raisons, elle est encore peu utilisée par les analystes. Ce livre a pour but de combler ce déficit en montrant comment l'estimer et l'utiliser au laboratoire. Un premier volume sur la validation des méthodes était conçu pour être pratique, LABO-STAT 2 suit le même principe à travers des feuilles de calcul directement adaptables à des cas concrets.

Max Feinberg est ingénieur agronome et docteur d'état en chimie, aujourd'hui retraité, il a occupé diverses fonctions de directeur de recherche à l'Institut national de la recherche agronomique (INRA). Une part importante de ses travaux se situe dans le domaine de la chimiométrie au'il a initiée en France.

Michel Laurentie est docteur en physiologie et pharmacologie animale, il est directeur de recherches à l'Agence nationale de sécurité sanitaire de l'alimentation, de l'environnement et du travail (Anses) au Laboratoire de Fougères. Il s'est également spécialisé dans l'analyse statistique des données, en particulier celles issues des comparaisons inter-laboratoires et des études de validation de méthodes.

Serge Rudaz a étudié la Pharmacie en Suisse, où il a obtenu sa thèse de doctorat en chimie analytique. Il est spécialiste de l'analyse des composés de faible poids moléculaire dans les matrices biologiques. C'est un expert dans la validation des méthodes, ainsi que dans l'analyse des données multivariées (MVA) pour la métabolomique. Aujourd'hui, il est professeur à la Section des sciences pharmaceutiques de l'Université de Genève (Suisse).

